WIMNACT WS & IEEE EDS Mini-colloquim on Nano-CMOS Technology January 30, 2012, TITECH, Japan

CMOS Scaling and Variability

2012. 1. 30 NEC Tohru Mogami

- I would like to thank members of Robust program in MIRAI project for supporting data, and especially Dr. A. Nishida for discussing a lot of issues.
- This work is supported by NEDO.

Outline

- **1. CMOS scaling and Variation**
- 2. Evaluation methods of Variation
- 3. How to improve variation?
- 4. Summary

CMOS scaling and Breakthrough technologies

Vth variation on chip and on Wafer

Vth random variation of N/P-FETs

For 1M devices, Vth variation shows normal distribution.
For 256M, Vth variation of NFET shows normal, but that of PFET shows normal and tail distribution.

Physical parameter vs. Vth variation

What is the relationship between physical parameters of MOSFET and Vth variation?

Theoretical threshold voltage and its standard deviation

$$\begin{array}{ll} \mbox{Threshold}\\ \mbox{voltage} \end{array} & \mbox{Vt} = \mbox{V}_{FB} + \mbox{φ}_{S} + \frac{\mbox{q} \mbox{N_{sub}} \mbox{W_{DEF}}}{\mbox{C_{inv}}} \\ \mbox{Standard}\\ \mbox{deviation} \end{array} & \mbox{σ} \mbox{Vt} = \frac{\mbox{q} \mbox{q}}{\mbox{C_{inv}}} \sqrt{\frac{\mbox{N_{sub}} \mbox{W_{dep}}}{\mbox{$3LW$}}} \end{array}$$

➢ Physical parameter

- ✓ L : Gate length
- ✓ W : Gate width
- ✓ Tox : Gate oxide thickness
- ✓ Nsub : impurity in Si substrate

etc.

• L, W scaling \rightarrow Enhance of variation by $\sqrt{(LW)}$.

Variation mechanisms

- > Random variation can come from several origins.
- RDF and LER are the main origins of the random variation.

Vth Random Variation & Pelgrom Plot

- Dr. Pelgrom proposed and demonstrated the simple evaluation method of the random variation in 1989.
- This is based on the simple statistics and useful.

$$\sigma_{VTH} = \frac{A_{VT}}{\sqrt{LW}}$$
$$A_{VT} \propto t_{INV} \sqrt{N_{SUB} W_{DEP}}$$

M. J. M. Pelgrom et al., IEEE JSSC, vol.

WIMNACT WS 2012, January 30, 24 aph1433, 1989.

Vth variation prospect

- Pelgrom plot can foretell the simple prospect of Vth variation.
- Simple device scaling-down can happen large Vth variation.
- If Avt keeps 3.8, 7nm FET will have about 400mV in Vth variation.
- Device parameter optimization, such as Tinv and gate work function, can improve the variation.
- If we need <100mV in Vth variation at 7nm FET, Avt should be 1.0.
- Need the new technology of variation improvement for the future generation.

Outline

1. CMOS scaling and Variation

- 2. Evaluation methods of Variation
- **3. How to improve variation?**
- 4. Summary

Pelgrom Plot

 Pelgrom plot has been a simple and useful method to evaluate the random variation.
Is there any issue of Pelgrom plot?

WIMNACT WS 2012, January 30, Titech

Is variation of 25nm

- Pelgrom plot is very useful when the data come from the devices with the same Tox and Vth. It can make variation date into a straight line.
- However, for the devices with the different Tox and Vth, pelgrom plot cannot make those into a straight line.

K. Takeuchi et al. Silicon Nano. Workshop, p.7, 2007. K. Takeuchi et al. IEDM, p. 467, 2007.

New normalization method

- New normalization method has been proposed by Dr. K. Takeuchi.
- This can handle the variation data for devices with and w/o different Nsub and Tox.

- Pelgrom plot can handle variation data for devices with the same Vth and Tox.
- Takeuchi plot can handle both data and make them into a line if the process is the same.

WIMNACT WS 2012, January 30, Titech

Vth Random Variation

- 0.35um-65nm devices have been analyzed by Takeuchi Plot, which can normalize L, W, Vth, and Tox.
- Vth variation of NFET was larger than that of PFET for every generation.
- PMOS random variation is determined by RDF.
- Origins of NMOS random variation are RDF and others.

WIMNACT WS 2012, January 30, Titech

Outline

- **1. CMOS scaling and Variation**
- **2. Evaluation methods of Variation**
- 3. How to improve variation?
- 4. Summary

Variation difference

- Takeuchi plot has revealed that Vth variation of NFET was larger than that of PFET for every generation.
- Only NFET with channel Boron showed reverse short channel characteristics. This indicated that channel Boron can be segregated near the junction edge.

Enhanced Variation mechanism

- Boron transient enhanced diffusion (TED) can be the origin of reverse short channel effect and the larger Vth variation of NFET.
- After As I/I for S/D region, interstitial Si (I-Si) has randomly produced near S/D region.
- During S/D annealing, B makes BI complex with I-Si and diffuses in the channel near S/D edges rapidly to happen TED.
- After annealing, B has pileup in the channel region at the edge of the S/D region.
- To control B TED, we need a new technique. \geq

Co-implantation for diffusion control

- Co-I/I can suppress dopant diffusion and achieve shallower Xj.
- Better short channel effect and better device characteristics.
- ➢ F I/I for PFET: 5E14-2E15

Carbon co-implantation for diffusion control

 \succ Carbon co-I/I can control dopant diffusion for NFET. Better short channel effect and on-current by C co-I/I

Effect of co-I/I method

- There are several reports for diffusion control by using Nitrogen, Silicon, Fluorine, and Carbon.
- > We have tried co-I/I method to mitigate Vth variation.
- However, co-I/I using Nitrogen, Silicon and Fluorine showed no effect to mitigate Vth variation.

Carbon co-I/I for Variation mitigation

- C co-I/I has improved reverse short channel effect w/o performance degradation for NFET.
- > Furthermore, C co-I/I has mitigated Vth variation of NFET.
- This is because Boron TED (Transient Enhanced Diffusion) in channel can be suppressed.

3D Atom Probe Analysis of Si-MOSFET

- SID Atom probe method can analyze Si-MOSFET structure, including gate insulator.
- RDF in channel can be measured by 3D Atom Probe.

Atom probe analysis of Boron diffusion

 Carbon co-I/I analysis revealed that Boron and carbon coclusters formed around the projection range of boron
Boron TED was suppressed by those.

WIMNACT Wo ZUIZ, January SU, THEUT

Summary

- Variation is the most important issue for the Advanced CMOS & LSI's.
- New variation evaluation method, Takeuchi plot, is very useful.
- Boron TED can be the origin of the larger Vth variation of NFET.
- To mitigate this variation of NFET, Carbon co-I/I technique is very useful.