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1. CMOS scaling and Variation 

2. Evaluation methods of Variation 

3. How to improve variation? 

4. Summary 
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 For 1M devices, Vth variation shows normal distribution. 

 For 256M, Vth variation of NFET shows normal, but that 

of PFET shows normal and tail distribution.  

(a) Vth variation for 1M devices (b) Vth variation for 256M devices 
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Physical parameter 
 L  : Gate length 

 W  : Gate width 

 Tox : Gate oxide thickness 

 Nsub : impurity in Si substrate 

       etc. 

    L, W scaling    →  Enhance of variation by √(LW). 
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inv

DEPsub
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C
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Physical parameter vs. Vth variation 

Theoretical threshold voltage and its standard deviation 

 What is the relationship between physical parameters of 

MOSFET and Vth variation? 
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Variation mechanisms 
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③ Oxide Thickness Fluctuation 
(OTF) 

Depend on gate insulator 
variation 

S D 

channel 

Depend on local 
variation of gate 
length 

② Line Edge Roughness 
(LER) 
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 Random variation can come from several origins. 

 RDF and LER are the main origins of the random variation. 
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Vth Random Variation & Pelgrom Plot 

9 

M. J. M. Pelgrom et al., IEEE JSSC, vol. 

24, p. 1433, 1989. 

DEPSUBINVVT WNtA 

LW

AVT
VTH 

Dr. Pelgrom proposed 

and demonstrated the 

simple evaluation 

method of the random 

variation in 1989.  

This is based on the 

simple statistics and 

useful. 
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Vth variation prospect 
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 Pelgrom plot can foretell the 

simple prospect of Vth variation. 

 Simple device scaling-down can 

happen large Vth variation. 

 If Avt keeps 3.8, 7nm FET will 

have about 400mV in Vth 

variation.  

  Device parameter optimization, 

such as Tinv and gate work 

function, can improve the 

variation. 

 If we need <100mV in Vth 

variation at 7nm FET, Avt should 

be 1.0. 

 Need the new technology of 

variation improvement  for the 

future generation. 
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Outline 

1. CMOS scaling and Variation 

2. Evaluation methods of Variation 

3. How to improve variation? 

4. Summary 
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Pelgrom Plot 

12 

Pelgrom plot has been a simple and useful method to 

evaluate the random variation.  

Is there any issue of Pelgrom plot? 
Is variation of 25nm 

MOSFET really 

smaller than that of 

50nm MOSFET? 
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K. Takeuchi et al. Silicon Nano. Workshop, p.7, 2007. 

K. Takeuchi et al. IEDM, p. 467, 2007.  

Issue of Pelgrom Plot 

Pelgrom plot is very useful  

when the data come from 

the devices with the same 

Tox  and Vth. It can make 

variation date into a 

straight line. 

However, for the devices 

with the different Tox and 

Vth,   pelgrom plot cannot 

make those into a straight 

line. 
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 New normalization method has been proposed by Dr. K. 
Takeuchi. 

 This can handle the variation data for devices with and w/o 
different Nsub and Tox.  

New normalization method 
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Takeuchi Plot 

 Pelgrom plot can handle variation data for devices 

with the same Vth and Tox. 

 Takeuchi plot can handle both data and make them 

into a line if the process is the same.   
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 0.35um-65nm devices have been analyzed by Takeuchi Plot, which 

can normalize L, W, Vth, and Tox. 

 Vth variation of NFET was larger than that of PFET for every 

generation. 

 PMOS random variation is determined by RDF. 

 Origins of NMOS random variation are RDF and others. 
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1. CMOS scaling and Variation 

2. Evaluation methods of Variation 

3. How to improve variation? 

4. Summary 
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Variation difference 

18 

 

 Takeuchi plot has revealed that Vth variation of NFET 

was larger than that of PFET for every generation. 

 Only NFET with channel Boron showed reverse short 

channel characteristics. This indicated that channel 

Boron can be segregated near the junction edge. 
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Enhanced Variation mechanism 

 Boron transient enhanced diffusion (TED) can be the origin of reverse 

short channel effect and the larger Vth variation of NFET. 

 After As I/I for S/D region, interstitial Si (I-Si) has randomly produced 

near S/D region.  

 During S/D annealing, B makes BI complex with I-Si and diffuses in 

the channel near S/D edges rapidly to happen TED. 

 After annealing, B has pileup in the channel region at the edge of the 

S/D region. 

 To control B TED, we need a new technique.  

(a) After As I/I (b) During annealing (c) After annealing 
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Co-implantation for diffusion control 

 Co-I/I can suppress dopant 

diffusion and achieve 

shallower Xj. 

 Better short channel effect 

and better device 

characteristics.  

 F I/I for PFET: 5E14-2E15 

Fluorine co-I/I for shallow P+ junction 

Co-I/I for shallow N+ junction 

20 
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Carbon co-implantation for diffusion control 

Carbon co-I/I can control dopant diffusion for NFET. 

Better short channel effect and on-current by C co-I/I  

 C.F. Tan et al., VLSI-TSA 2008 21 
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Effect of co-I/I method 

 There are several reports for diffusion control by using 

Nitrogen, Silicon, Fluorine, and Carbon.    

 We have tried co-I/I method to mitigate Vth variation. 

 However, co-I/I using Nitrogen, Silicon and Fluorine 

showed no effect to mitigate Vth variation.  
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Carbon co-I/I for Variation mitigation 

 C co-I/I has improved reverse short channel effect w/o 

performance degradation for NFET. 

 Furthermore, C co-I/I has mitigated Vth variation of NFET. 

 This is because Boron TED (Transient Enhanced Diffusion) 

in channel can be suppressed. 

 T.Tsunomura et al., VLSI Symp 2009, p.110.  
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3D Atom Probe System 

3D Atom probe method can analyze 

Si-MOSFET structure, including gate 

insulator. 

RDF in channel can be measured by 

3D Atom Probe. 

3D Atom Probe Analysis of Si-MOSFET 
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Atom probe analysis of Boron diffusion 
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Carbon co-I/I analysis revealed that Boron and carbon co-

clusters formed around the projection range of boron 

Boron TED was suppressed by those.  

 Y. Shimizu et al., APL, 98, 

232101, 2011.  
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Summary 

❒Variation is the most important issue for the 

Advanced CMOS & LSI’s. 

❒New variation evaluation method, Takeuchi plot,  

is very useful.  

❒Boron TED can be the origin of the larger Vth 

variation of NFET.  

❒To mitigate this variation of NFET, Carbon co-I/I 

technique is very useful.  

 


